Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Mathematical Methods in the Applied Sciences ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2316796

ABSTRACT

As the COVID‐19 continues to mutate, the number of infected people is increasing dramatically, and the vaccine is not enough to fight the mutated strain. In this paper, a SEIR‐type fractional model with reinfection and vaccine inefficacy is proposed, which can successfully capture the mutated COVID‐19 pandemic. The existence, uniqueness, boundedness, and nonnegativeness of the fractional model are derived. Based on the basic reproduction number R0$$ {R}_0 $$, locally stability and globally stability are analyzed. The sensitivity analysis evaluate the influence of each parameter on the R0$$ {R}_0 $$ and rank key epidemiological parameters. Finally, the necessary conditions for implementing fractional optimal control are obtained by Pontryagin's maximum principle, and the corresponding optimal solutions are derived for mitigation COVID‐19 transmission. The numerical results show that humans will coexist with COVID‐19 for a long time under the current control strategy. Furthermore, it is particularly important to develop new vaccines with higher protection rates. [ FROM AUTHOR] Copyright of Mathematical Methods in the Applied Sciences is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Fractal and Fractional ; 5(3):120, 2021.
Article in English | MDPI | ID: covidwho-1409091

ABSTRACT

In the face of an increasing number of COVID-19 infections, one of the most crucial and challenging problems is to pick out the most reasonable and reliable models. Based on the COVID-19 data of four typical cities/provinces in China, integer-order and fractional SIR, SEIR, SEIR-Q, SEIR-QD, and SEIR-AHQ models are systematically analyzed by the AICc, BIC, RMSE, and R means. Through extensive simulation and comprehensive comparison, we show that the fractional models perform much better than the corresponding integer-order models in representing the epidemiological information contained in the real data. It is further revealed that the inflection point plays a vital role in the prediction. Moreover, the basic reproduction numbers R0 of all models are highly dependent on the contact rate.

SELECTION OF CITATIONS
SEARCH DETAIL